A simple image of Earth and the 
interior layers.  Windows to the Universe, at 
(http://www.windows.ucar.edu) at the University Corporation for Atmospheric 
Research (UCAR).  ©1995-1999, 2000 The Regents of the University of Michigan; 
©2000-05 University Corporation for Atmospheric Research. 
The Sunnah of Prophet Muhammad is 
the second revealed source of Islam.  Like the Quran, it contains scientific 
information unavailable 1400 years ago.  From these miracles is the “seven” 
earths, mentioned by the Prophet in several of his sayings.  From them are the 
following two: 
Hadith 1
It was narrated on the authority 
of Abu Salamah that a dispute arose between him and some other people (about a 
piece of land).  When he told Aisha (the Prophet’s wife) about it, she said, ‘O 
Abu Salamah!  Avoid taking the land unjustly, for the Prophet said: 
“Whoever usurps even one 
span of land of somebody, its depth through the seven earths will be collared to 
his neck.” (Saheeh Al-Bukhari, ‘Book of Oppression.’) 
Hadith 2
Salim narrated on the authority 
of his father that the Prophet said: 
“Whoever takes a piece of 
land of others unjustly, he will sink down the seven earths on the Day of 
Resurrection.” (Saheeh Al-Bukhari, ‘Book of Oppression.’) 
The aforementioned hadith 
prohibits oppression in general, especially the taking of a piece of land 
belonging to others unjustly.  What might the seven earths refer to? 
Studies in geology have proven 
that the earth is composed of seven zones, identified from the inner to the 
outer layers as follows: 
(1)  The Solid Inner Core of 
Earth: 1.7% of the Earth’s mass; depth of 5,150 - 6,370 kilometers (3,219 - 
3,981 miles) 
The inner core is solid and 
unattached to the mantle, suspended in the molten outer core.  It is believed to 
have solidified as a result of pressure-freezing which occurs to most liquids 
when temperature decreases or pressure increases. 
(2)  The Liquid Outer core: 
30.8% of Earth’s mass; depth of 2,890 - 5,150 kilometers (1,806 - 3,219 
miles) 
The outer core is a hot, 
electrically conducting liquid within which convective motion occurs.  This 
conductive layer combines with Earth’s rotation to create a dynamo effect that 
maintains a system of electrical currents known as the Earth’s magnetic field.  
It is also responsible for the subtle jerking of Earth’s rotation.  This layer 
is not as dense as pure molten iron, which indicates the presence of lighter 
elements.  Scientists suspect that about 10% of the layer is composed of sulfur 
and/or oxygen because these elements are abundant in the cosmos and dissolve 
readily in molten iron. 
(3)  The “D” Layer: 3% of 
Earth’s mass; depth of 2,700 - 2,890 kilometers (1,688 - 1,806 miles) 
This layer is 200 to 300 
kilometers (125 to 188 miles) thick and represents about 4% of the mantle-crust 
mass.  Although it is often identified as part of the lower mantle, seismic 
discontinuities suggest the “D” layer might differ chemically from the lower 
mantle lying above it.  Scientists theorize that the material either dissolved 
in the core, or was able to sink through the mantle but not into the core 
because of its density. 
(4)  Lower Mantle: 49.2% of 
Earth’s mass; depth of 650 - 2,890 kilometers (406 -1,806 miles) 
The lower mantle contains 72.9% 
of the mantle-crust mass and is probably composed mainly of silicon, magnesium, 
and oxygen.  It probably also contains some iron, calcium, and aluminum.  
Scientists make these deductions by assuming the Earth has a similar abundance 
and proportion of cosmic elements as found in the Sun and primitive 
meteorites. 
(5)  Middle Mantle 
(Transition region): 7.5% of Earth’s mass; depth of 400 - 650 kilometers 
(250-406 miles) 
The transition region or 
mesosphere (for middle mantle), sometimes called the fertile layer, contains 
11.1% of the mantle-crust mass and is the source of basaltic magmas.  It also 
contains calcium, aluminum, and garnet, which is a complex aluminum-bearing 
silicate mineral.  This layer is dense when cold because of the garnet.  It is 
buoyant when hot because these minerals melt easily to form basalt which can 
then rise through the upper layers as magma. 
(6)  Upper Mantle: 10.3% of 
Earth’s mass; depth of 10 - 400 kilometers (6 - 250 miles) 
The upper mantle contains 15.3% 
of the mantle-crust mass.  Fragments have been excavated for our observation by 
eroded mountain belts and volcanic eruptions.  Olivine (Mg,Fe)2SiO4 and pyroxene 
(Mg,Fe)SiO3 have been the primary minerals found in this way.  These and other 
minerals are refractory and crystalline at high temperatures; therefore, most 
settle out of rising magma, either forming new material or never leaving the 
mantle.  Part of the upper mantle called the asthenosphere might be partially 
molten. 
(7)  Lithosphere 
Oceanic crust: 0.099% of Earth’s 
mass; depth of 0-10 kilometers (0 - 6 miles) 
The rigid, outermost layer of the 
Earth comprising the crust and upper mantle is called the lithosphere.  The 
oceanic crust contains 0.147% of the mantle-crust mass.  The majority of the 
Earth’s crust was made through volcanic activity.  The oceanic ridge system, a 
40,000-kilometer (25,000 mile) network of volcanoes, generates new oceanic crust 
at the rate of 17 km3 per year, covering the ocean floor with basalt.  Hawaii 
and Iceland are two examples of the accumulation of basalt piles. 
This image shows a cross section 
through the earth’s crust and upper mantle showing lithosphere plates (made of 
the crust layer and the top part of the mantle) moving over the asthenosphere 
(upper mantle).  Windows to the Universe, at 
(http://www.windows.ucar.edu) at the University Corporation for Atmospheric 
Research (UCAR).  ©1995-1999, 2000 The Regents of the University of Michigan; 
©2000-05 University Corporation for Atmospheric Research.  Continental crust: 0.374% of Earth’s mass; depth 
of 0-50 kilometers (0 - 31 miles) 
The continental crust contains 
0.554% of the mantle-crust mass.  This is the outer part of the Earth composed 
essentially of crystalline rocks.  These are low-density buoyant minerals 
dominated mostly by quartz (SiO2) and feldspars (metal-poor silicates).  The 
crust (both oceanic and continental) is the surface of the Earth; as such, it is 
the coldest part of our planet.  Because cold rocks deform slowly, we refer to 
this rigid outer shell as the lithosphere (the rocky or strong layer). 
This image shows the divisions of the 
Earth’s interior into 7 layers.  (Adapted from Beatty, 1990). 
Conclusion
The layers of the earth coincide 
with the above mentioned hadith of the Prophet.  The miracle is in two 
matters: 
(1)  The expression of the 
hadith, ‘He will sink down the seven earths on the Day of Resurrection,’ 
indicates the stratification of these “earths” around one center. 
(2)  The accuracy with which 
the Prophet of Islam referred to the seven inner layers of earth. 
The only way for a desert dweller 
to have known these facts 1400 years ago is through revelation from God. 
References
Beatty, J. K. 
and A. Chaikin, eds.  The New Solar System.  Massachusetts: Sky Publishing, 3rd 
Edition, 1990. 
Press, Frank 
and Raymond Siever.  Earth.  New York: W. H. Freeman and Company, 1986. 
Seeds, Michael 
A. Horizons. Belmont, California: Wadsworth, 1995. 
El-Najjar, 
Zaghloul.  Treasures In The Sunnah: A Scientific Approach: Cairo, Al-Falah 
Foundation, 2004. 
read more on: http://www.islamreligion.com/articles/299/  | 
Thursday, 7 November 2013
The Seven Earths
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment